SUNSHINE JIANG & WENQI DING

MATH WITHOUT NUMBERS

18.000

WHO ARE WE?

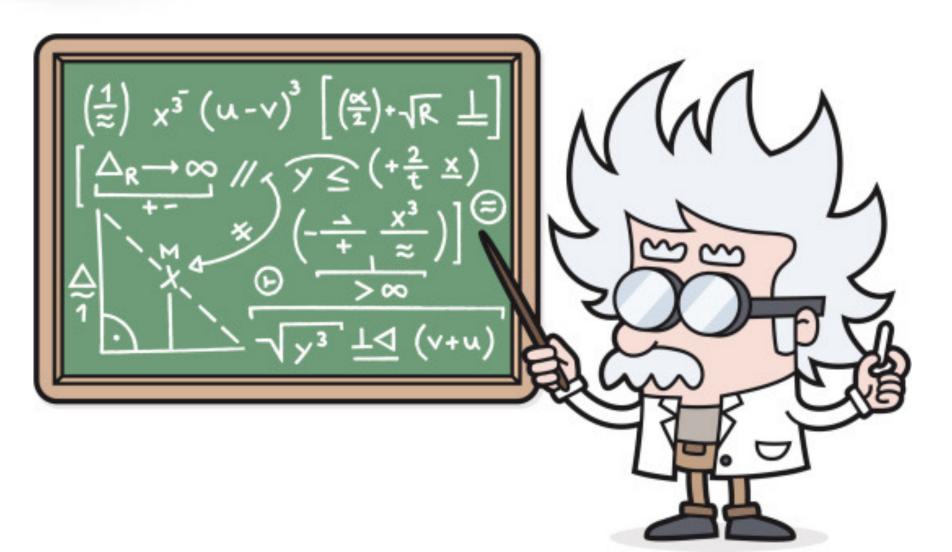
Sunshine Jiang

Freshman, potential physics & math and computer science major

Wenqi (Helen) Ding

Freshman, potential computer science major

ANSWER QUESTIONS AND WIN PRIZES!



SUNSHINE JIANG 2021.11.20

FUNTOPOLOGY

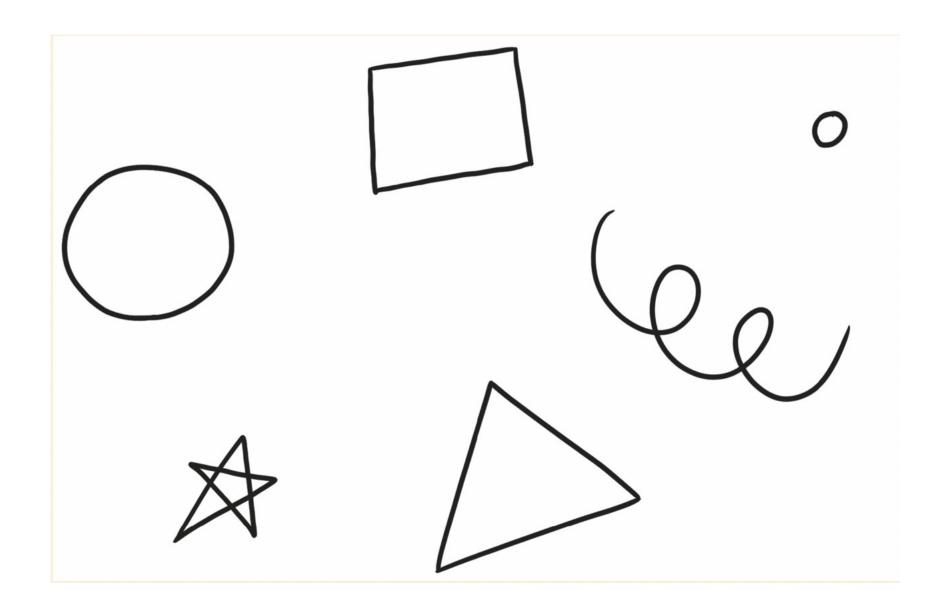
Math Without Numbers

SHAPES

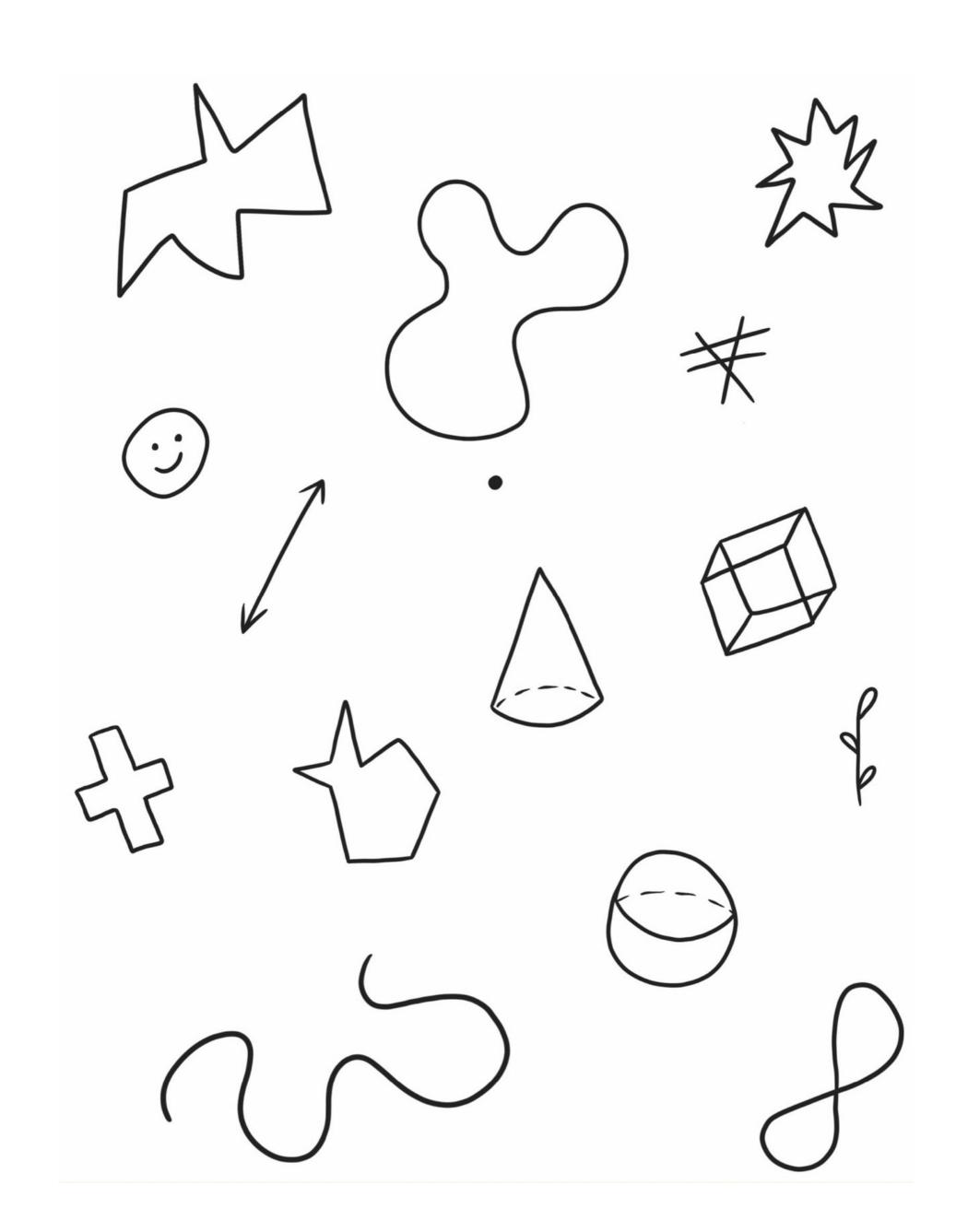
HOW MANY SHAPES THERE ARE?

GENERALIZED POINCARÉ CONJECTURE

DRAW SHAPES



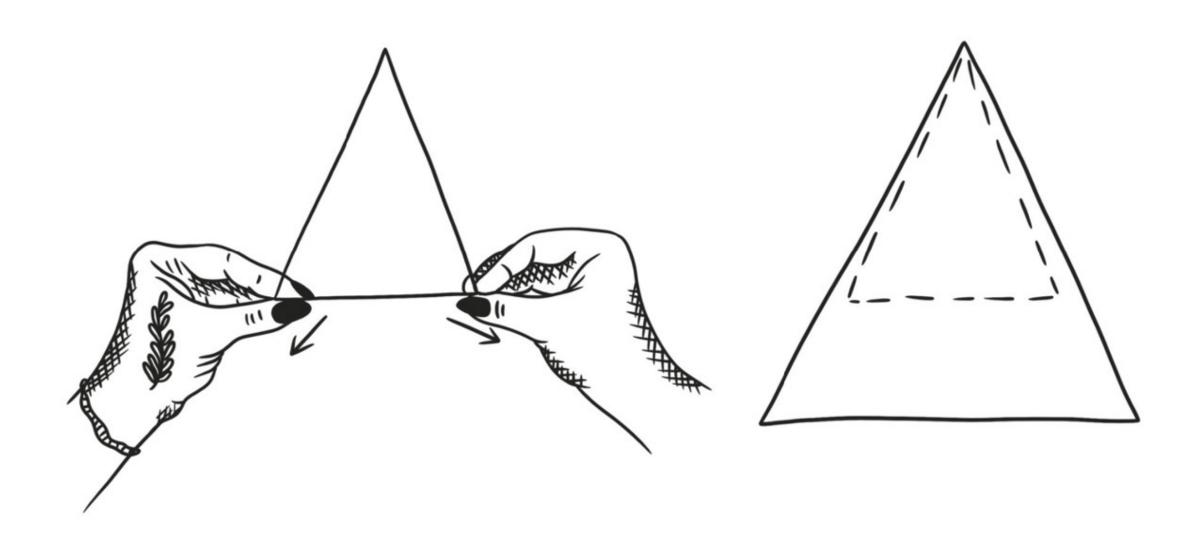
DEFINITION!



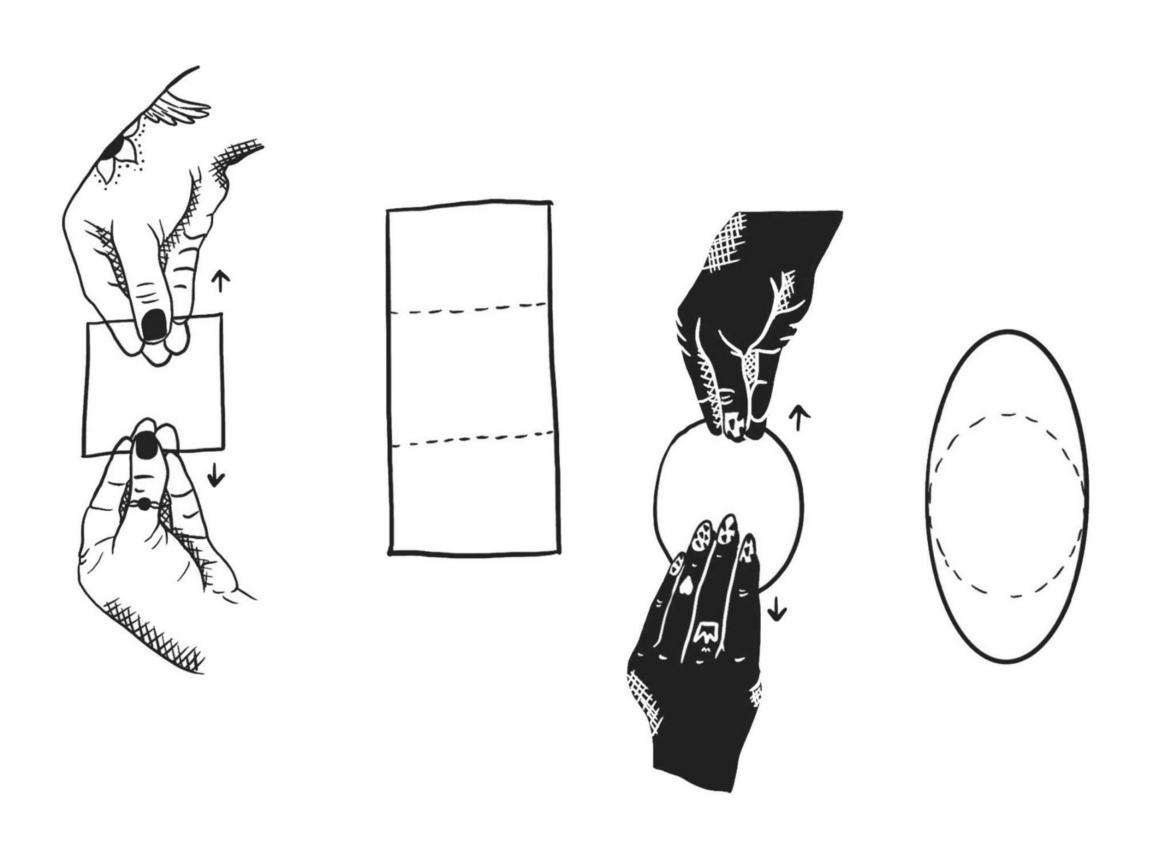
CONGRUENT

- **Geometry:** Two mathematical figures have the same geometry if the figures have the same shape and congruent measures.
- Topology: Two mathematical figures have the same topology if one figure can be transformed into the other figure by twisting and stretching, without ripping or gluing.
- Shapes made out of thin, endless stretchy material

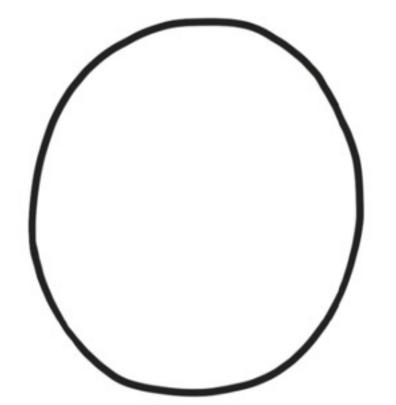
SIZE DOES NOT MATTER

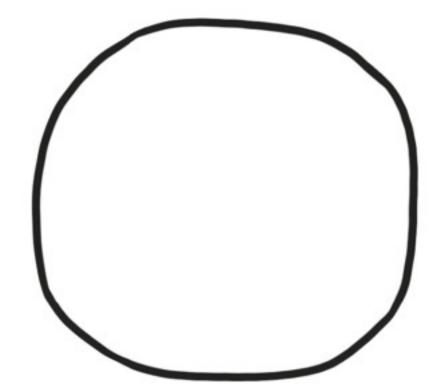


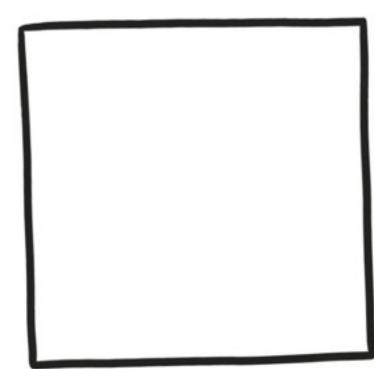
CIRCLE=0VAL



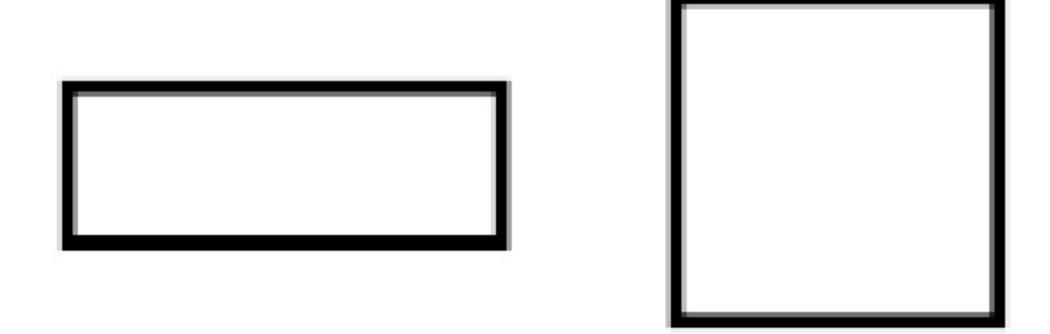
CIRCLE=SQUARE



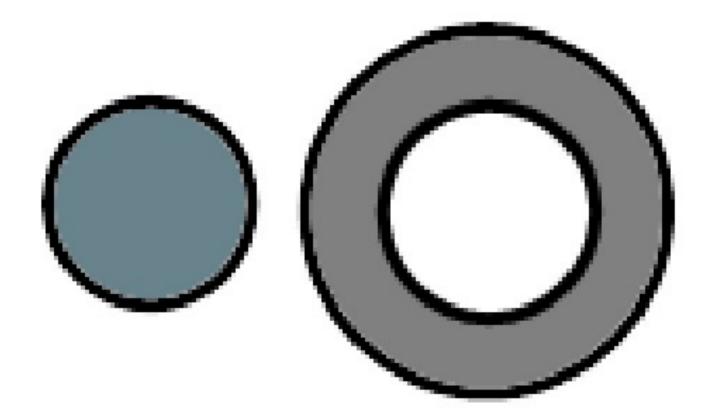




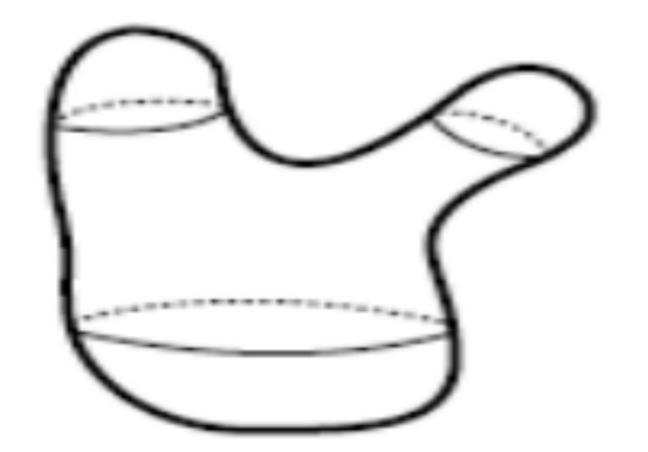
topology

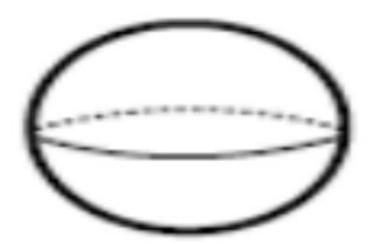


neither

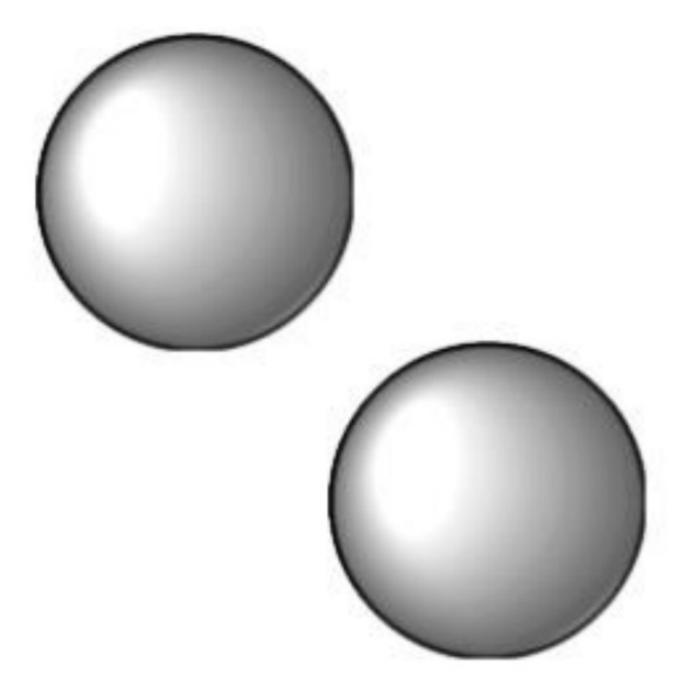


topology





geometry

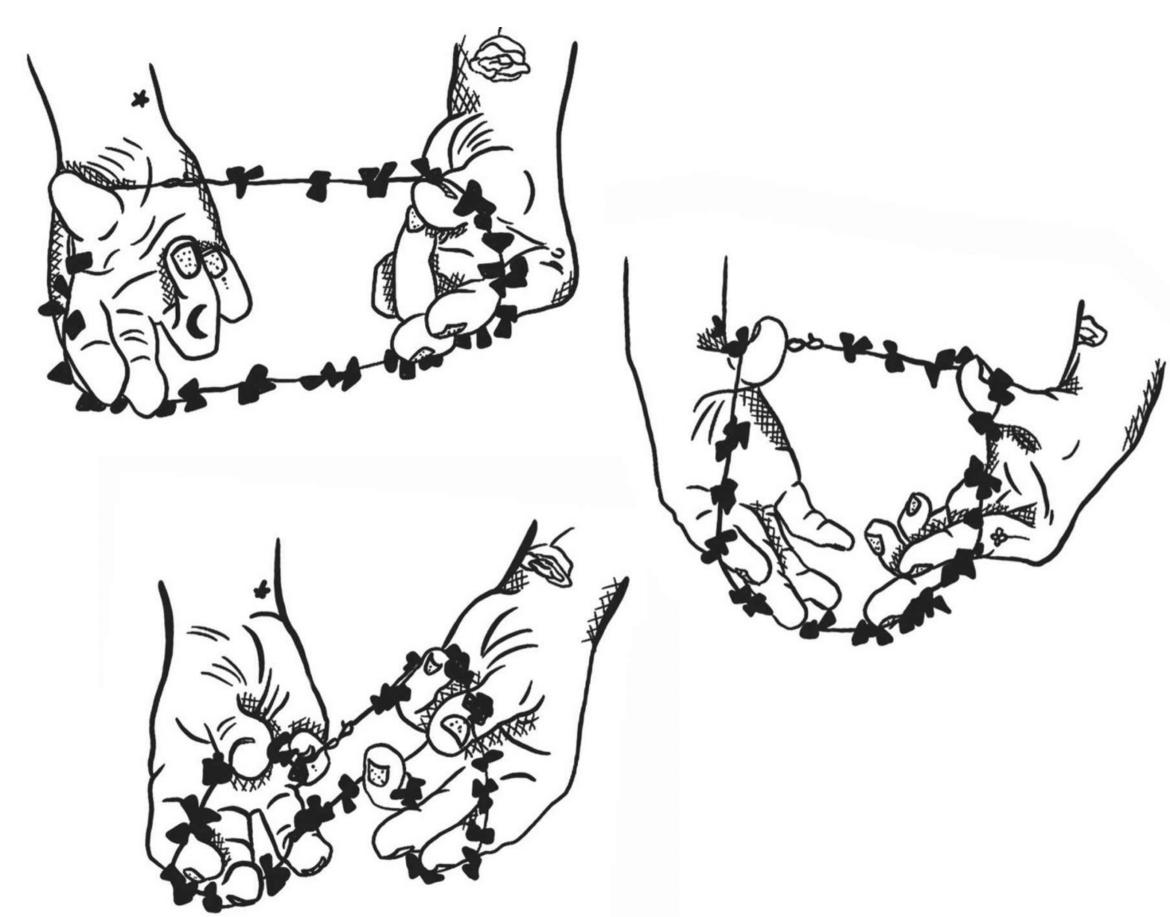


topology

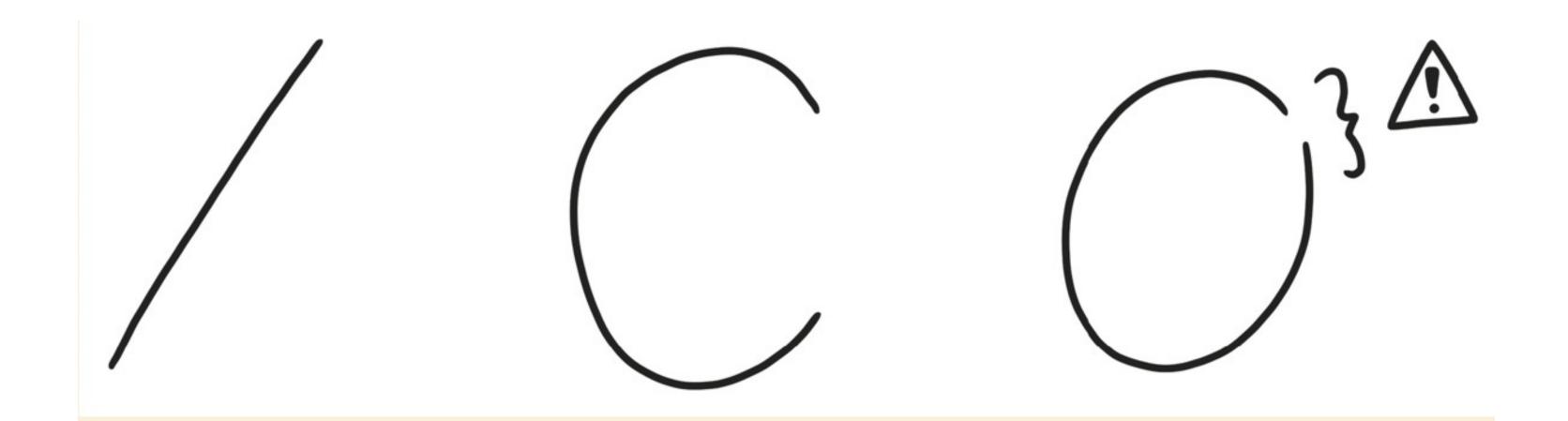
WHAT IS THE SHAPE OF A NECKLACE

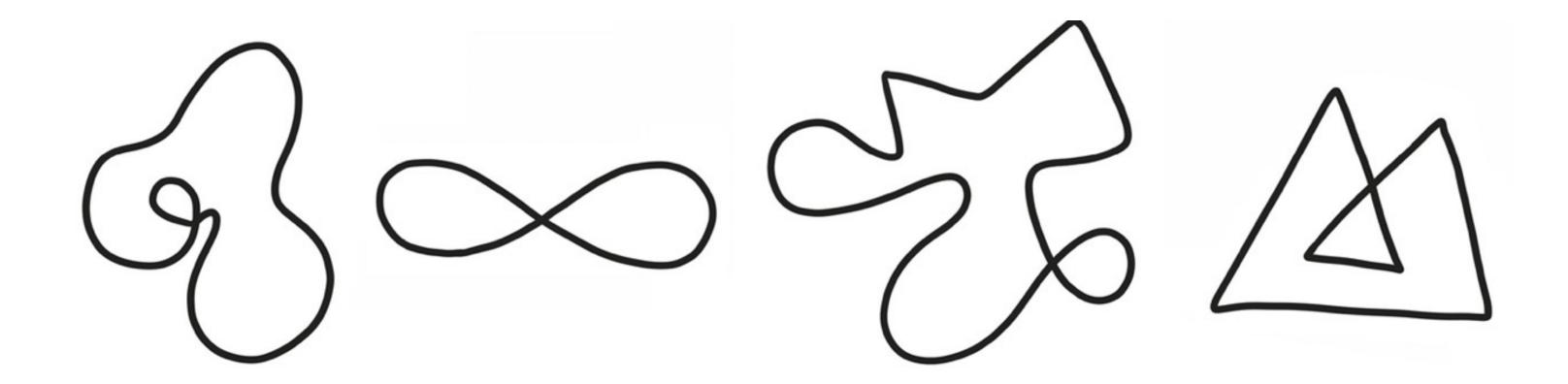
We focus only on the core, underlying shape: the basic features that make a shape the shape it is.

S-1



OTHER SHAPES?





HOW MANY SHAPES THERE ARE?

INFINITY



INFINITY FAMILY

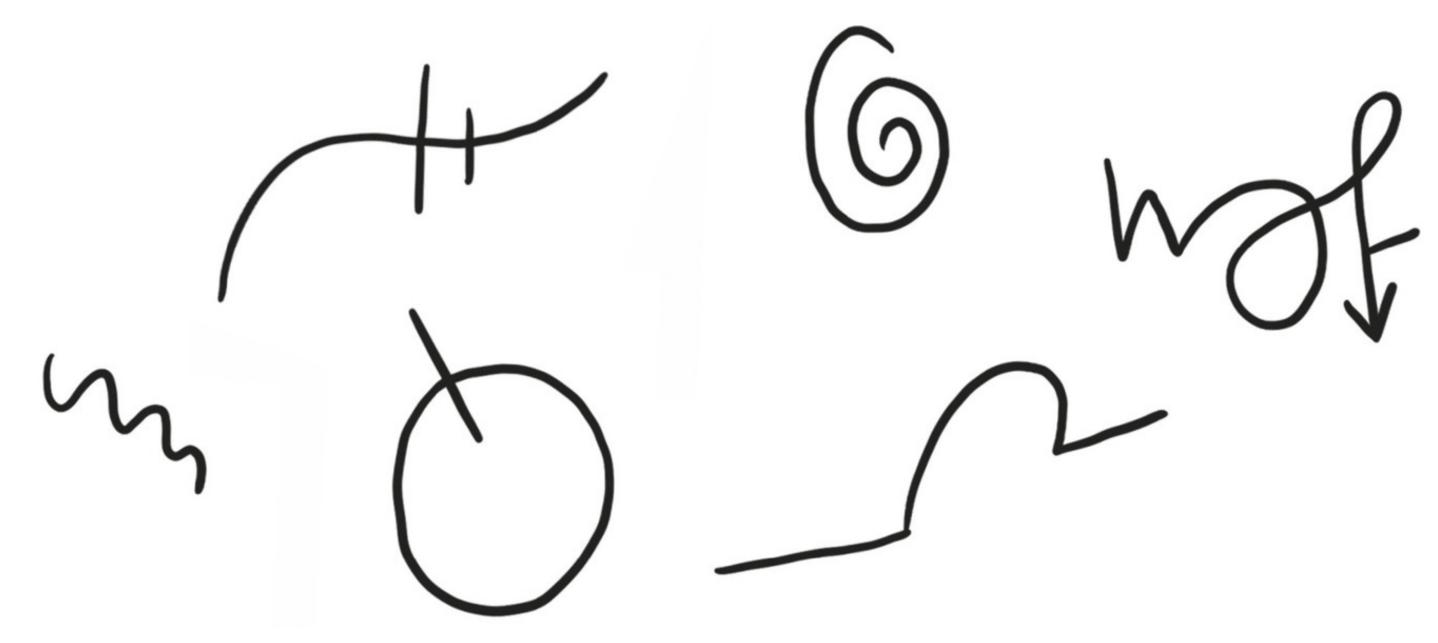
- **Prove infinitely many of something**
- describe a systematic process that keeps creating new different examples of that thing.

BETTER QUESTION

MANIFOLDS

DEFINITION

- No special points, no end-points, no crossing-points, no edge-points, no branching-points.
- It has to be the same everywhere.
- **Dimension: the material it is made out of**

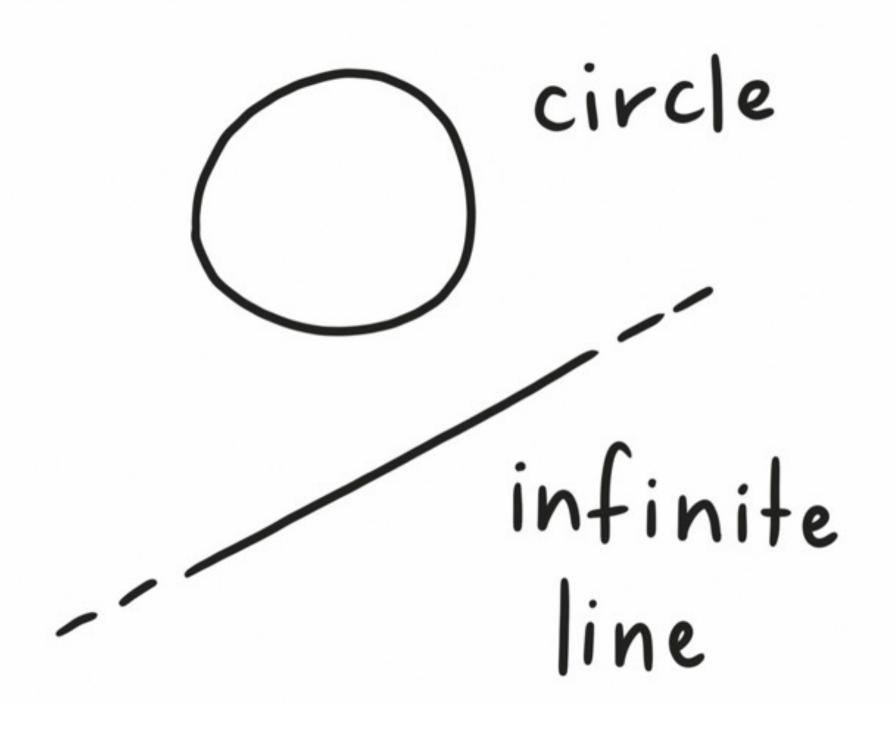


MAYBE EXACT CATEGORIES OF MANIFOLDS

ONE-DIMENSIONAL MANIFOLD?

MADE BY STRING-LIKE

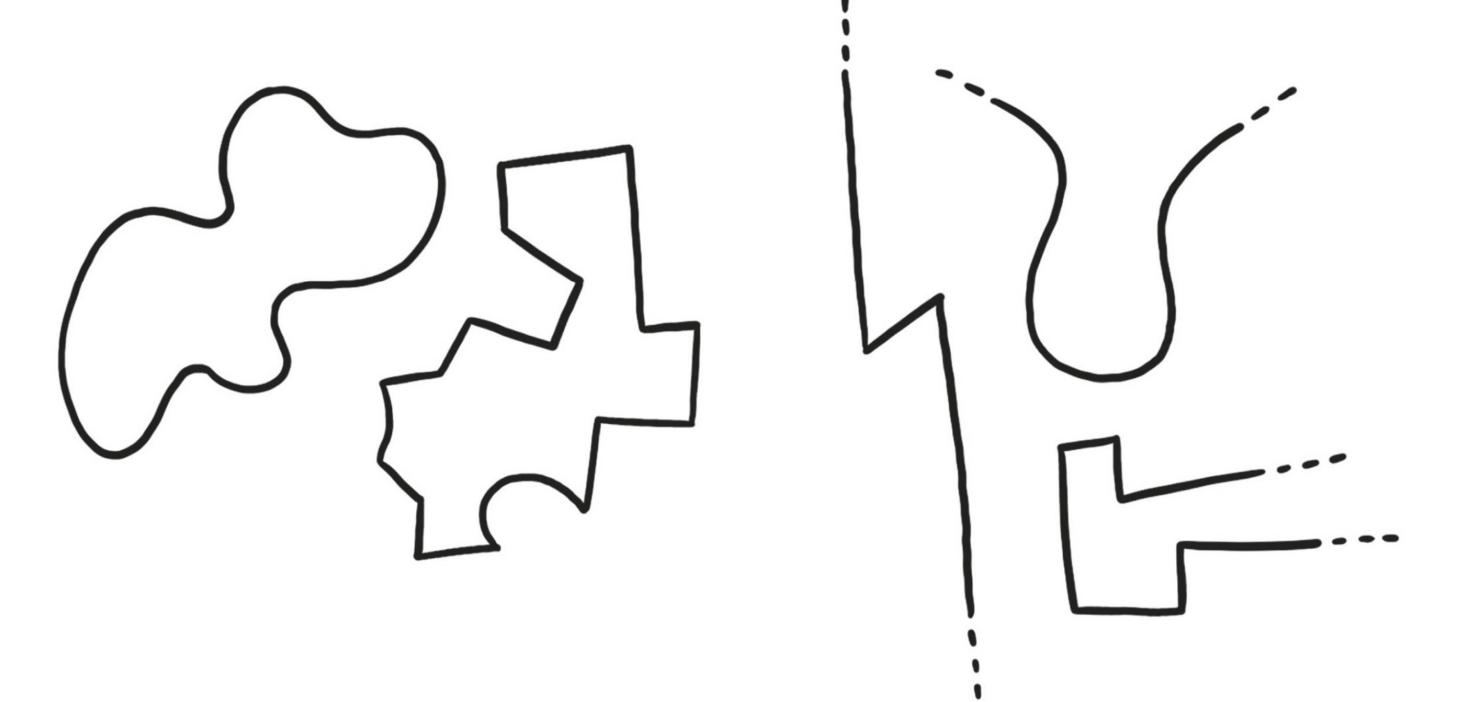
HINT: NO ENDPOINTS



all possible string – manifolds

R-1 & S-1

- Circle S-1
- Infinite line R-1

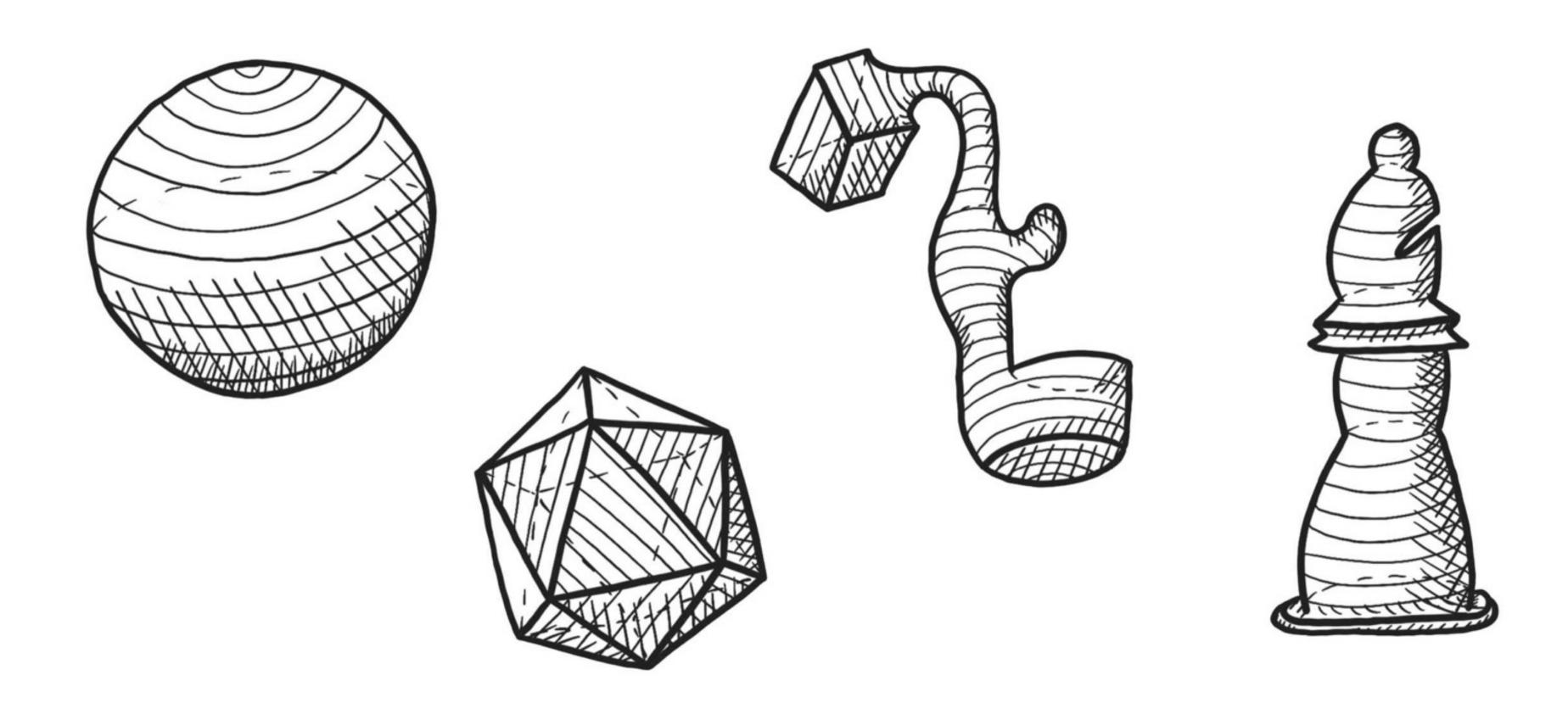


TWO-DIMENSIONAL MANIFOLD?

MADE BY SHEET-LIKE MATERIAL

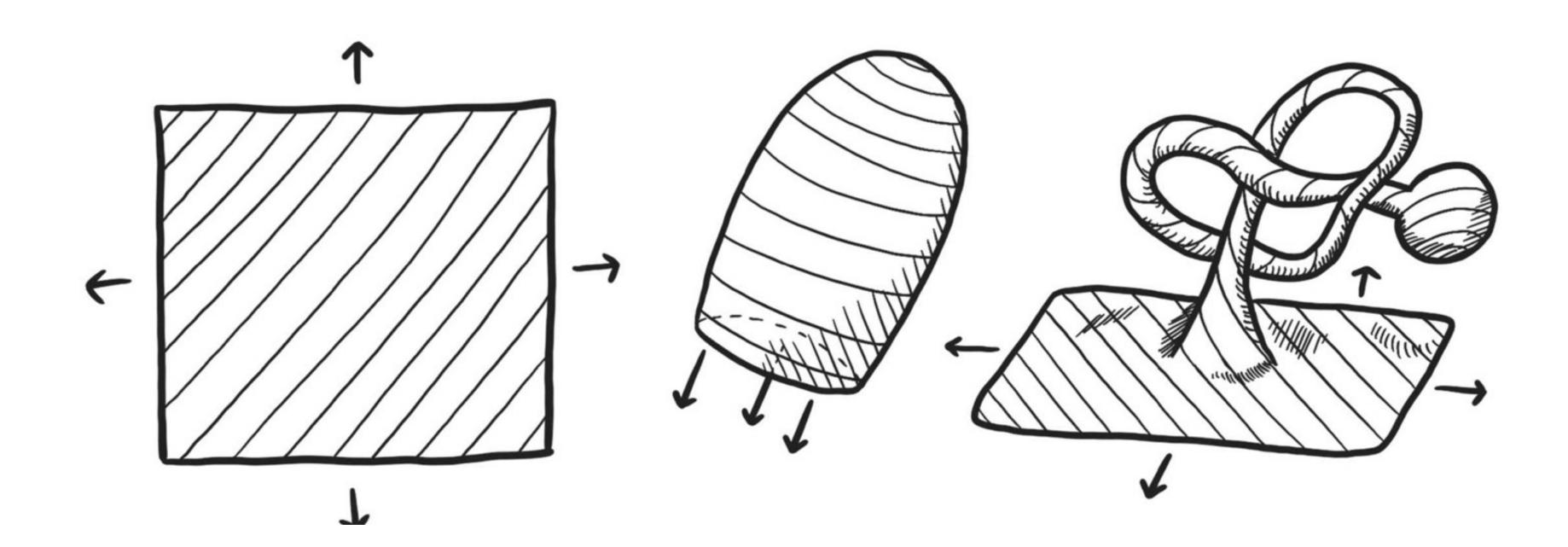
HINT: WE LIVE ON A MANIFOLD, SIMILAR LOGIC AS 1-D CASE

S-2



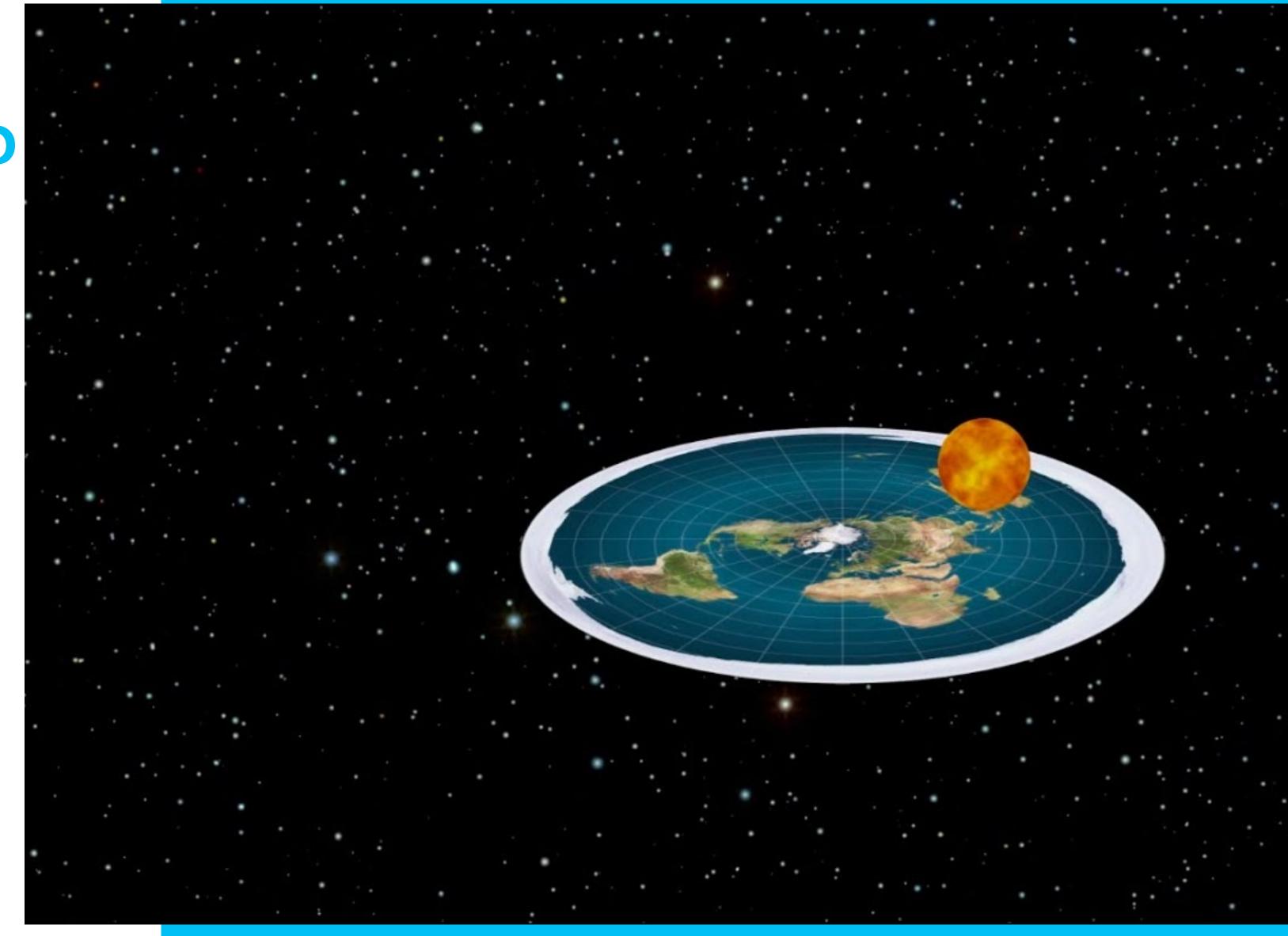
R-2

Any infinite surface that divides space into two infinite regions.



EARTH IS FLAT?

- Manifolds do not have special point
- Would feel like living on a plane if you lived on any sheet-manifold

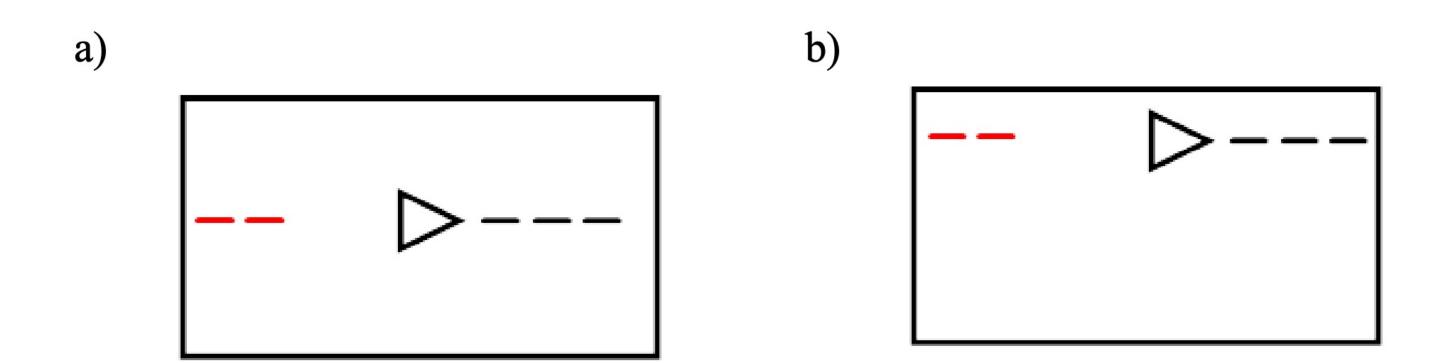


MORE 2-D MANIFOLDS!

IDENTITY SPACE

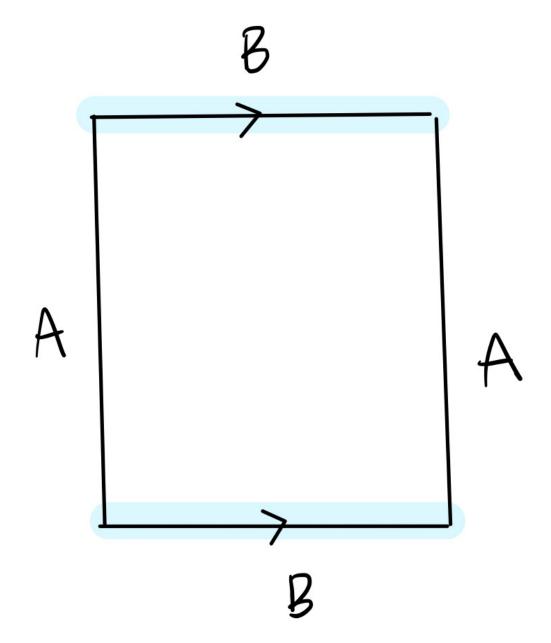
GAME ASTEROIDS

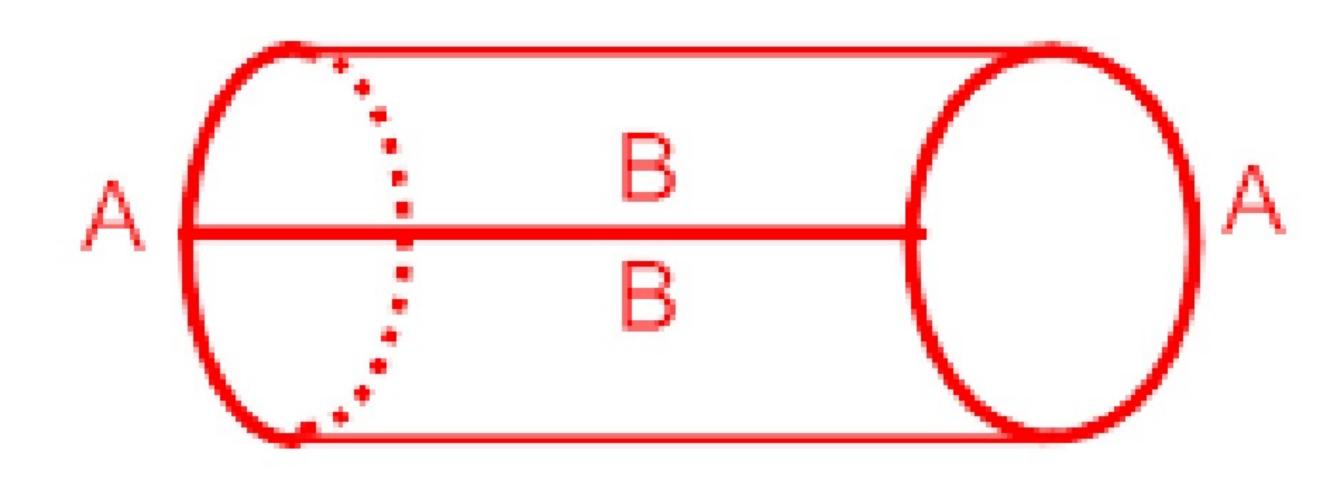
- https://www.youtube.com/watch?v=5rjjtJ2GMN8
- Questions to consider while watching:
- What shape appears to be the space for the game?
- What happened when an object came into contact with one of the sides of the shape?



GLUE SIDES TOGETHER

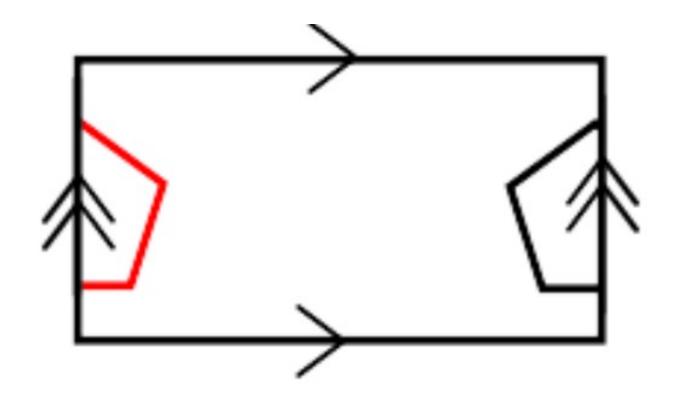
- If you were given a piece of paper, how could we recreate what happens to the objects in the game Asteroids?
- The arrows represent the gluing of the shape. You must think of the gluing "matching" up the arrows.

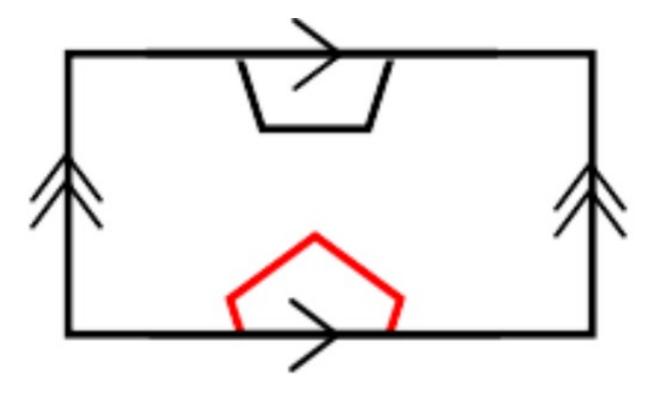


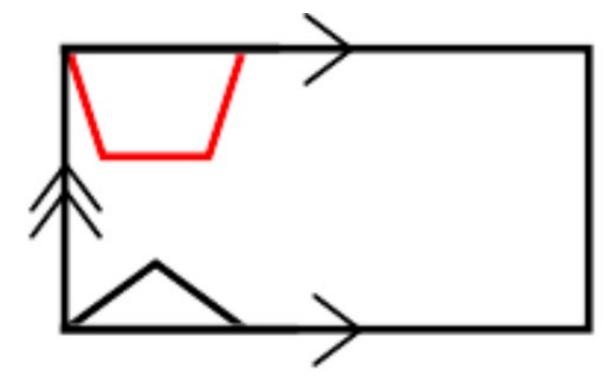


GLUE SIDES TOGETHER

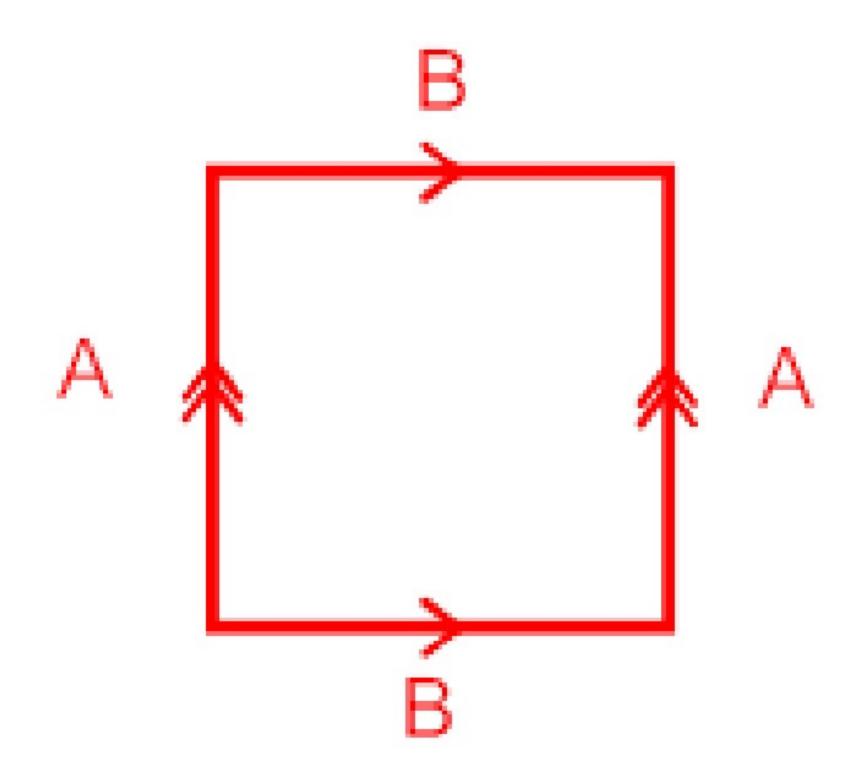
The arrows represent the gluing of the shape. You must think of the gluing "matching" up the arrows.

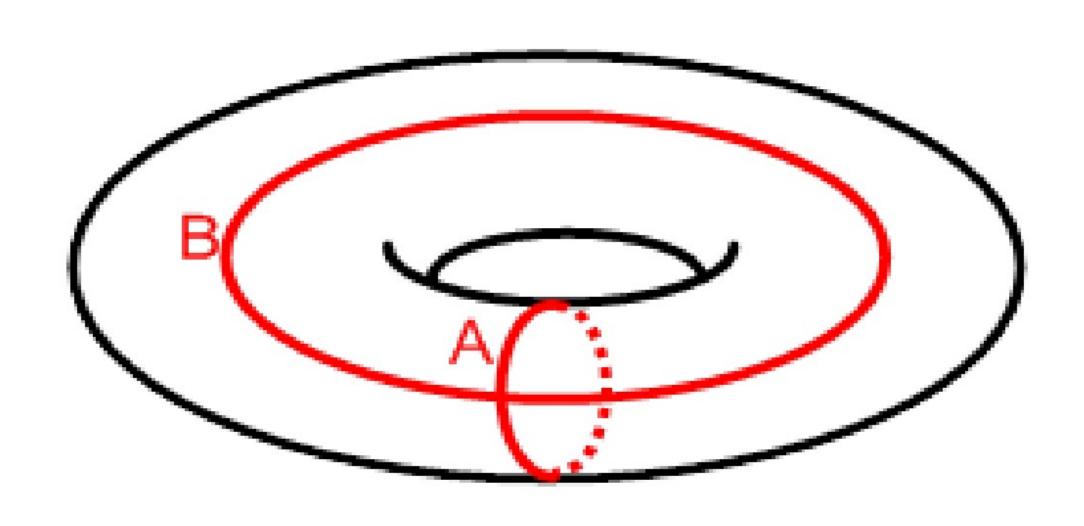






WHAT IS THIS MANIFOLD



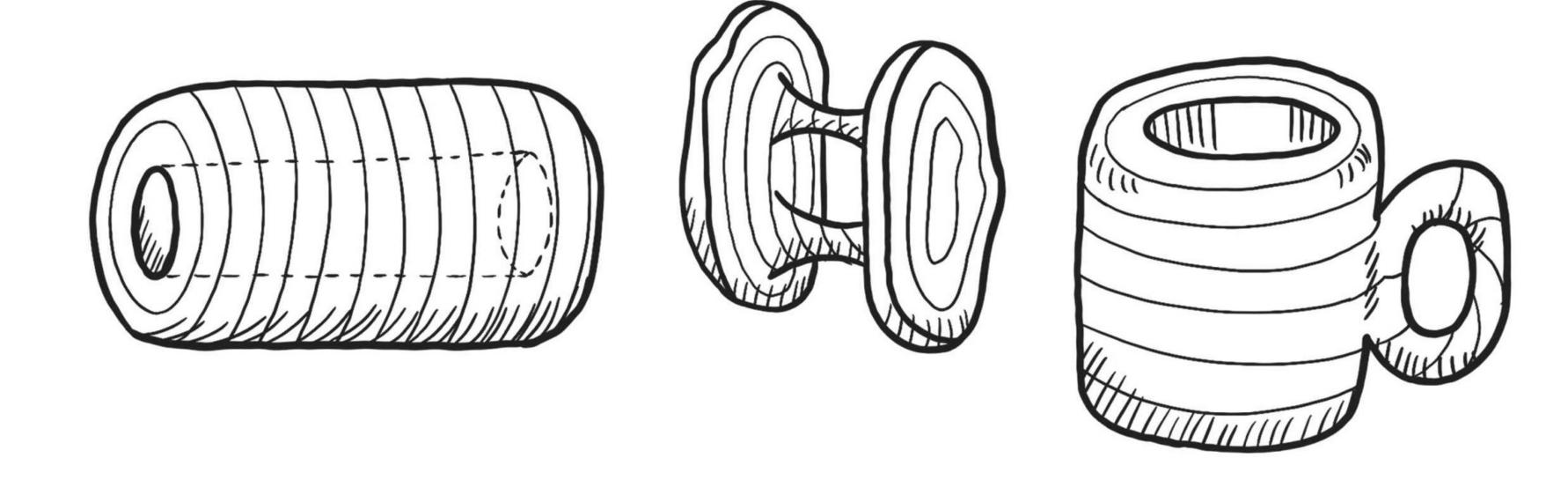


DONUT

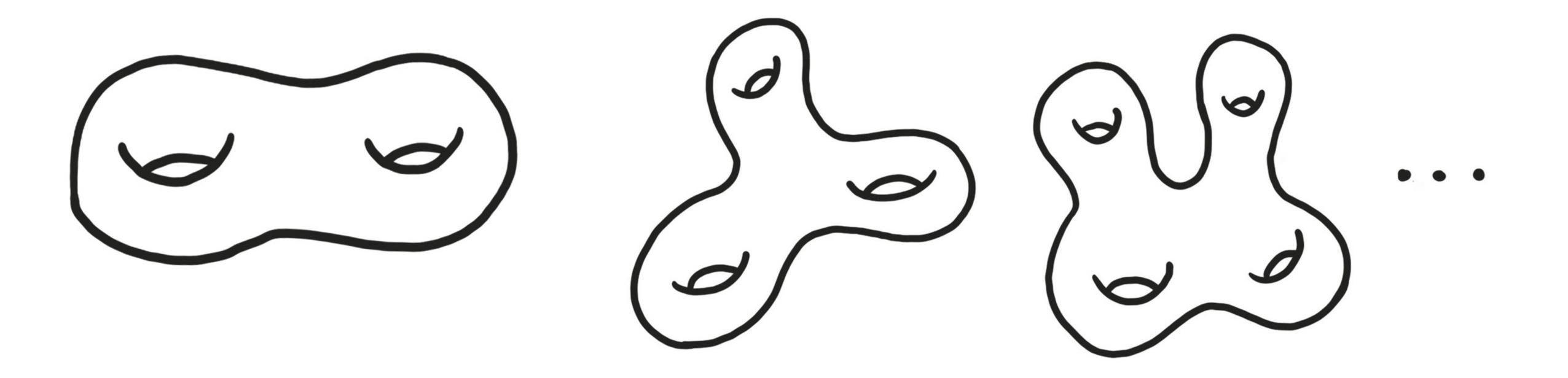
If you lived on the surface of a donut-shaped planet, you'd never notice from looking around that there was a hole. It would look, locally, just like if you lived on a sphere or a flat plane.



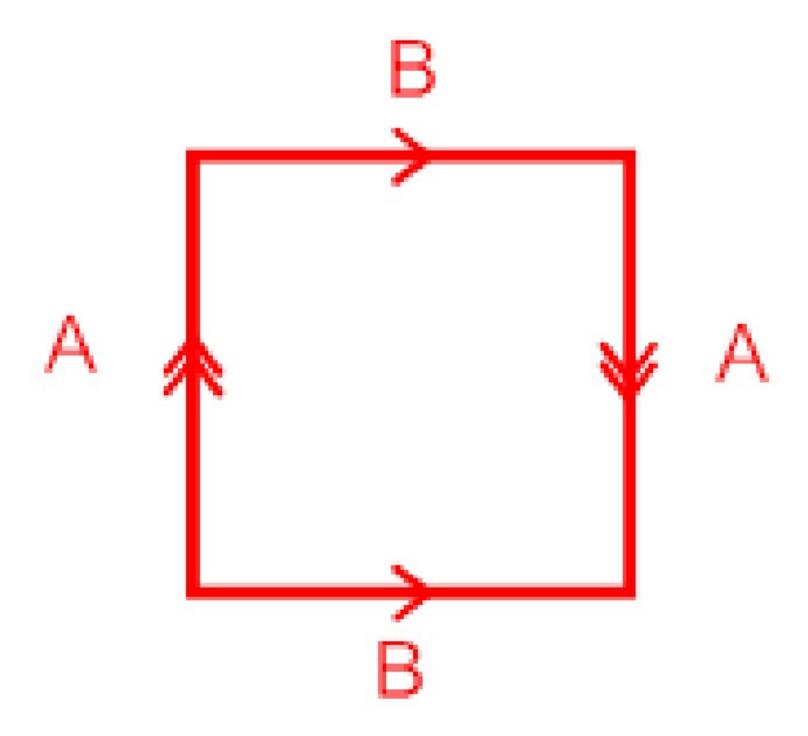
7-2



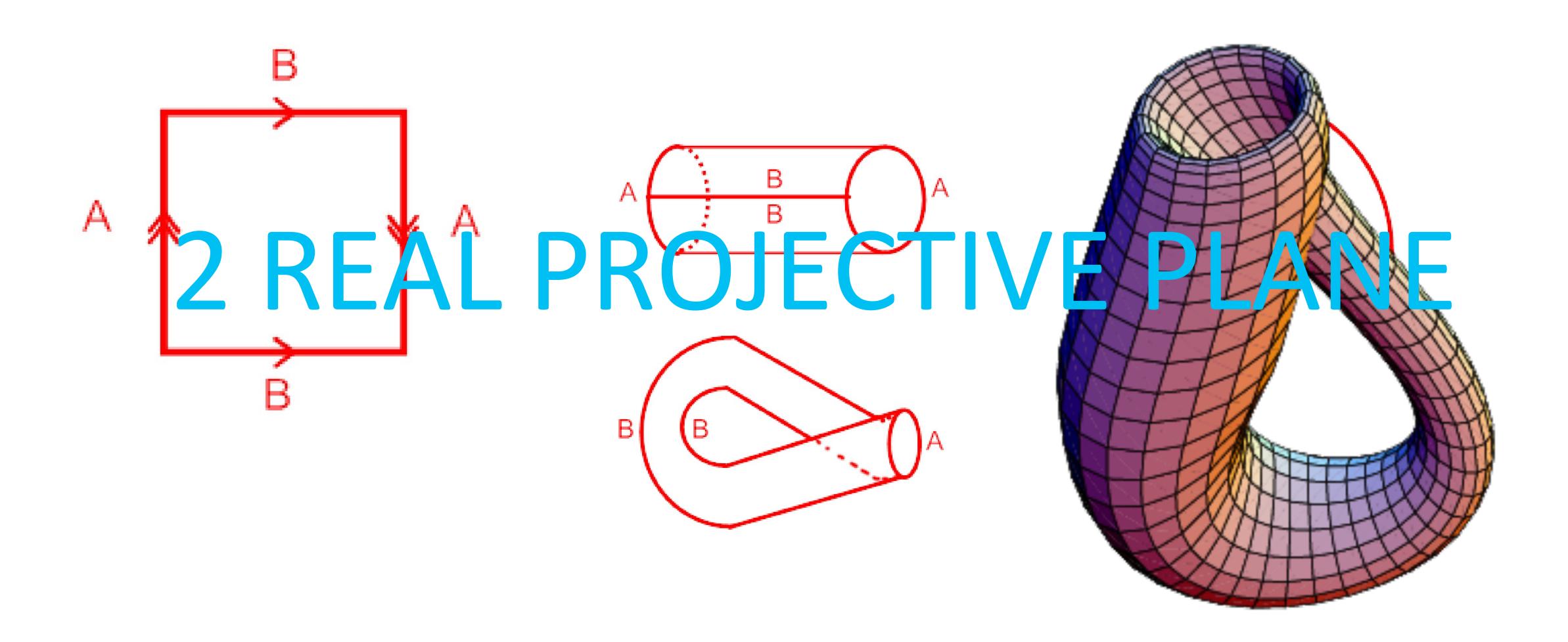
MORE TORI



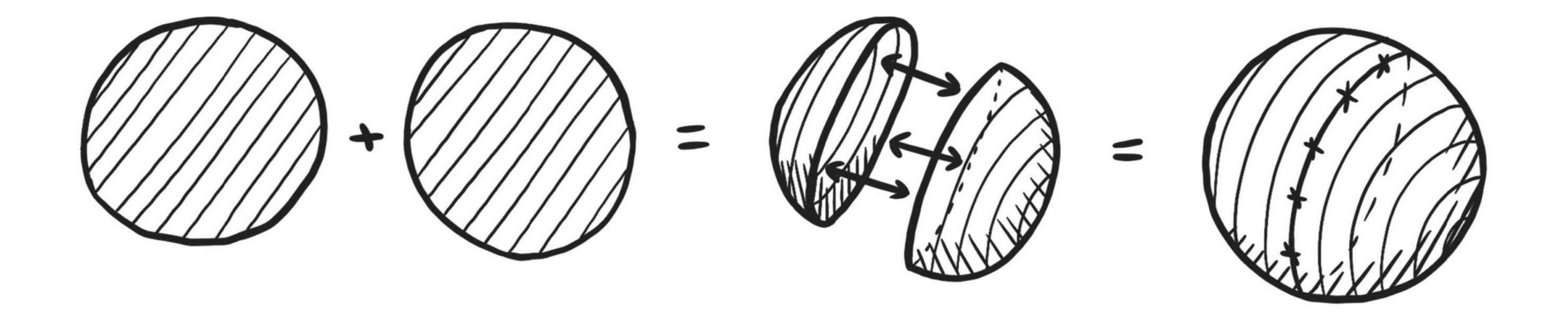
WHAT IS THIS IN 2D?



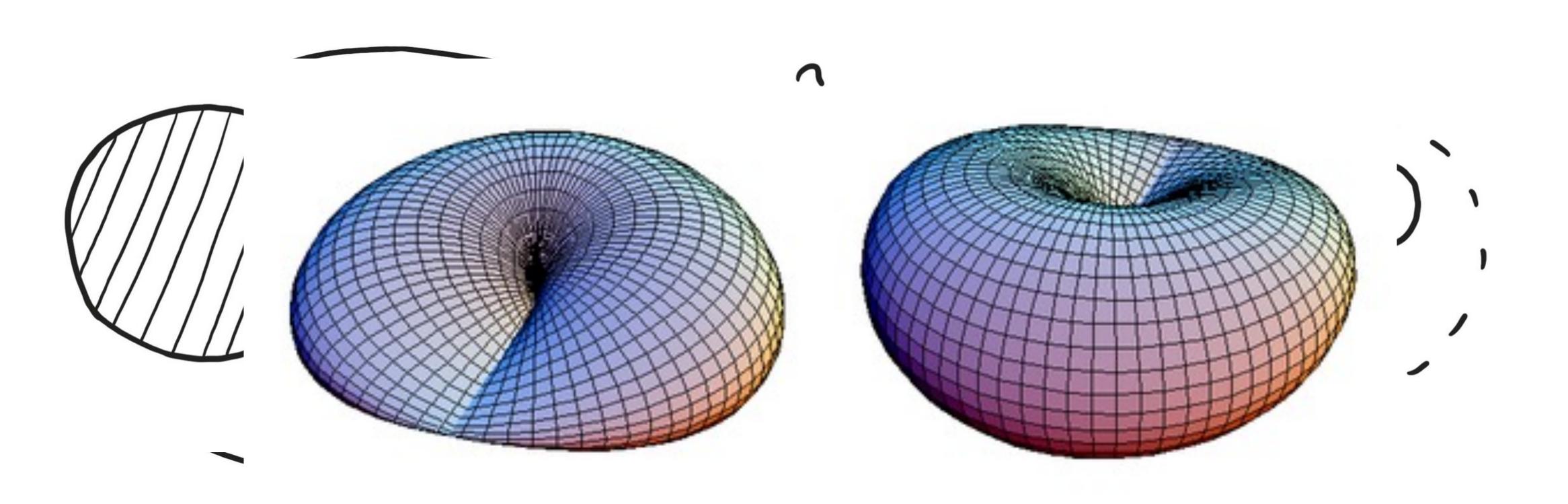
KLEIN BOTTLE



SPHERE



RP2 REAL PROJECTIVE PLANE



EXIST IN 4-D?

8

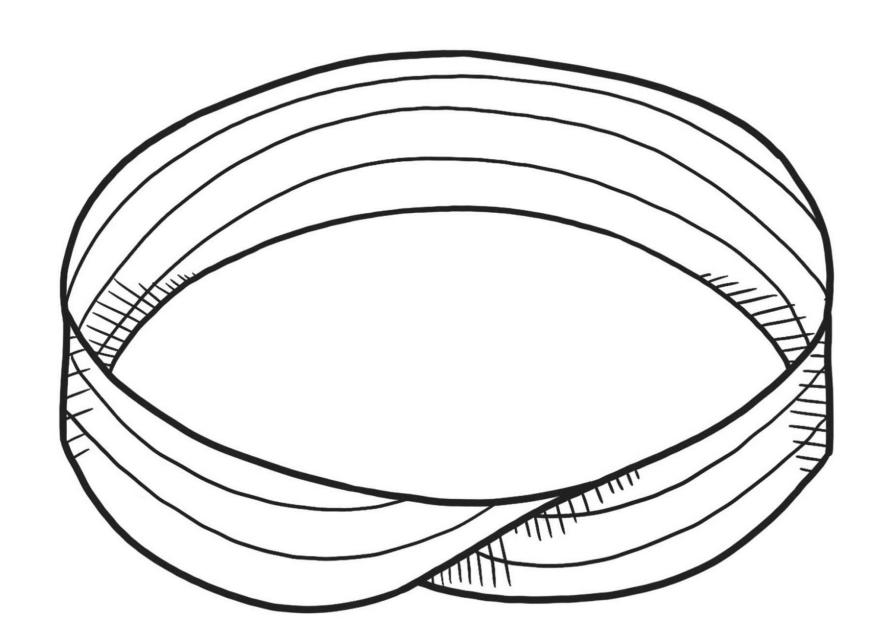
R-2

- only one side: A sphere and a torus have an inside and an outside, but a real projective plane just has one side that twists to the inside and out.
- If you write the letter R on a sphere or torus, and slide it around through the space, it'll always come back looking like an R. But if you slide an R around on a real projective plane, it could come back looking like an inverse R.

ORIENTABILITY

DEFINITION

- A surface is orientable if a figure making all possible global trips on the surface does not change its orientation at any time.
- Möbius Strip https://www.youtube.com/watch?v=JBYXT9AAOvc 3:22

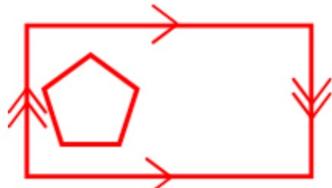


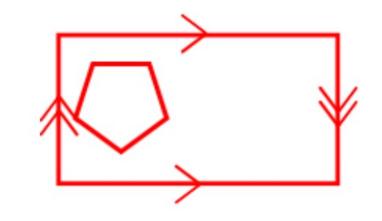
KLEIN BOTTLE

- Would this happen if the pentagon moved up and down instead of left and right?
- orientation is preserved.
- What would happen if it went through the right side?

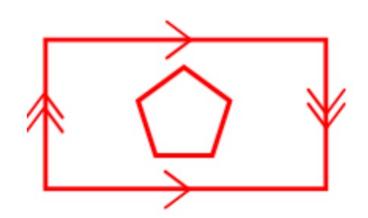
1.

4.

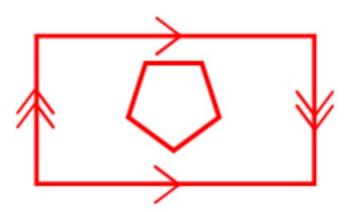




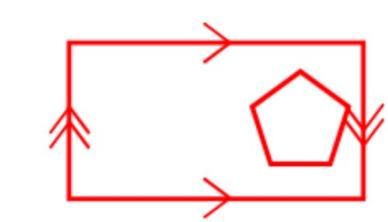
2.



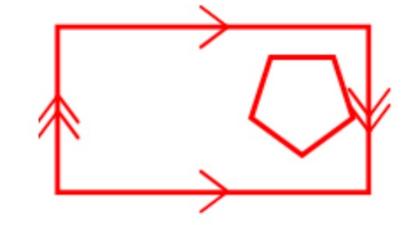
5



3.

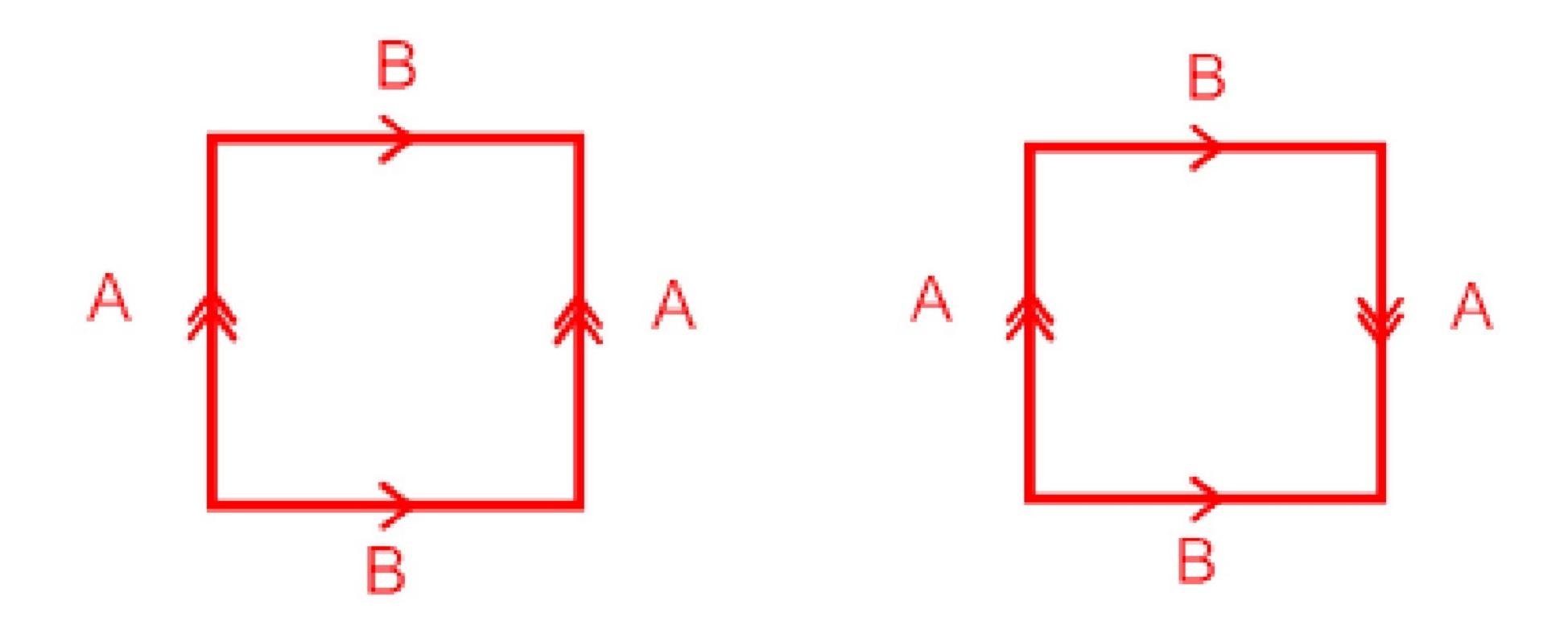


6.



WHAT IS THE DIFFERENCE BETWEEN THE TORUS AND THE KLEIN BOTTLE?

One of the pairs of glued sides has the arrows going in the opposite direction



HIGHER DIMENSIONS

- 3- dimension: dough-type manifolds
- dimensions 5 and up: "surgery theory"
- dimension 4